
An efficient method to clone TAL effector genes from Xanthomonas oryzae using Gibson assembly
Author(s) -
Li Chenhao,
Ji Chonghui,
HuguetTapia José C.,
White Frank F.,
Dong Hansong,
Yang Bing
Publication year - 2019
Publication title -
molecular plant pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.945
H-Index - 103
eISSN - 1364-3703
pISSN - 1464-6722
DOI - 10.1111/mpp.12820
Subject(s) - biology , xanthomonas oryzae , gene , genome , xanthomonas , genetics , xanthomonas oryzae pv. oryzae , cloning (programming) , effector , computational biology , microbiology and biotechnology , computer science , programming language
Summary Transcription Activator‐Like effectors (TALes) represent the largest family of type III effectors among pathogenic bacteria and play a critical role in the process of infection. Strains of Xanthomonas oryzae pv. oryzae (Xoo) and some strains of other Xanthomonas pathogens contain large numbers of TALe genes. Previous techniques to clone individual or a complement of TALe genes through conventional strategies are inefficient and time‐consuming due to multiple genes (up to 29 copies) in a given genome, and technically challenging due to the repetitive sequences (up to 33 nearly identical 102‐nucleotide repeats) of individual TALe genes. Thus, only a limited number of TALe genes have been molecularly cloned and characterized, and the functions of most TALe genes remain unknown. Here, we present an easy and efficient cloning technique to clone TALe genes selectively through in vitro homologous recombination and single‐strand annealing, and demonstrate the feasibility of this approach with four different Xoo strains. Based on the Gibson assembly strategy, two complementary vectors with scaffolds that can preferentially capture all TALe genes from a pool of genomic fragments were designed. Both vector systems enabled cloning of a full complement of TALe genes from each of four Xoo strains and functional analysis of individual TALes in rice in approximately 1 month compared to 3 months by previously used methods. The results demonstrate a robust tool to advance TALe biology and a potential for broad usage of this approach to clone multiple copies of highly competitive DNA elements in any genome of interest.