
Characterization of silencing suppressor p24 of Grapevine leafroll‐associated virus 2
Author(s) -
Li Mingjun,
Zhang Jiao,
Feng Ming,
Wang Xianyou,
Luo Chen,
Wang Qi,
Cheng Yuqin
Publication year - 2018
Publication title -
molecular plant pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.945
H-Index - 103
eISSN - 1364-3703
pISSN - 1464-6722
DOI - 10.1111/mpp.12525
Subject(s) - gene silencing , rna silencing , biology , nicotiana benthamiana , rss , rna , small rna , small interfering rna , trans acting sirna , rna induced silencing complex , microrna , argonaute , rna interference , microbiology and biotechnology , genetics , virus , gene , computer science , operating system
Summary Grapevine leafroll‐associated virus 2 (GLRaV‐2) p24 has been reported to be an RNA silencing suppressor (RSS). However, the mechanisms underlying p24's suppression of RNA silencing are unknown. Using Agrobacterium infiltration‐mediated RNA silencing assays, we showed that GLRaV‐2 p24 is a strong RSS triggered by positive‐sense green fluorescent protein (GFP) RNA, and that silencing suppression by p24 effectively blocks the accumulation of small interfering RNAs. Deletion analyses showed that the region of amino acids 1–188, which contains all predicted α‐helices and β‐strands, is required for the RSS activity of p24. Hydrophobic residues I35/F38/V85/V89/W149 and V162/L169/L170, previously shown to be critical for p24 self‐interaction, are also crucial for silencing suppression, and western blotting results suggested that a lack of self‐interaction ability results in decreased p24 accumulation in plants. The mutants showed greatly weakened or a lack of RSS activity. Substitution with two basic residues at positions 2 or 86, putatively involved in RNA binding, totally abolished the RSS activity of p24, suggesting that p24 uses an RNA‐binding strategy to suppress RNA silencing. Our results also showed that W54 in the WG/GW‐like motif (W54/G55) is crucial for the RSS activity of p24, whereas p24 does not physically interact with AGO1 of Nicotiana benthamiana . Furthermore, p24 did not promote AGO1 degradation, but significantly up‐regulated AGO1 mRNA expression, and this effect was correlated with the RSS activity of p24, indicating that p24 may interfere with microRNA‐directed processes. The presented results contribute to our understanding of viral suppression of RNA silencing and the molecular mechanisms underlying GLRaV‐2 infection.