z-logo
open-access-imgOpen Access
P seudomonas corrugata crpCDE is part of the cyclic lipopeptide corpeptin biosynthetic gene cluster and is involved in bacterial virulence in tomato and in hypersensitive response in N icotiana benthamiana
Author(s) -
Strano Cinzia Patricia,
Bella Patrizia,
Licciardello Grazia,
Fiore Alberto,
Lo Piero Angela Roberta,
Fogliano Vincenzo,
Venturi Vittorio,
Catara Vittoria
Publication year - 2015
Publication title -
molecular plant pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.945
H-Index - 103
eISSN - 1364-3703
pISSN - 1464-6722
DOI - 10.1111/mpp.12207
Subject(s) - biology , gene , hypersensitive response , atp binding cassette transporter , mutant , gene cluster , virulence , microbiology and biotechnology , genetics , transporter , plant disease resistance
Summary P seudomonas corrugata   CFBP 5454 produces two kinds of cyclic lipopeptides ( CLP s), cormycin A and corpeptins, both of which possess surfactant, antimicrobial and phytotoxic activities. In this study, we identified genes coding for a putative non‐ribosomal peptide synthetase and an ABC ‐type transport system involved in corpeptin production. These genes belong to the same transcriptional unit, designated crpCDE . The genetic organization of this locus is highly similar to other P seudomonas   CLP biosynthetic clusters. Matrix‐assisted laser desorption ionization‐time of flight‐mass spectrometry ( MALDI‐TOF ‐ MS ) analysis revealed that transporter and synthetase genomic knock‐out mutants were unable to produce corpeptins, but continued to produce cormycin A . This suggests that CrpCDE is the only system involved in corpeptin production in P . corrugata   CFBP 5454. In addition, phylogenetic analysis revealed that the CrpE ABC transporter clustered with the transporters of CLPs with a long peptide chain. Strains depleted in corpeptin production were significantly less virulent than the wild‐type strain when inoculated in tomato plants and induced only chlorosis when infiltrated into N icotiana benthamiana leaves. Thus, corpeptins are important effectors of P . corrugata interaction with plants. Expression analysis revealed that crpC transcription occurs at high cell density. Two LuxR transcriptional regulators, PcoR and RfiA , have a pivotal role in crpC expression and thus in corpeptin production.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here