z-logo
Premium
Fc‐conjugated C‐type lectin receptors: Tools for understanding host–pathogen interactions
Author(s) -
Willment Janet A.
Publication year - 2022
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1111/mmi.14837
Subject(s) - glycan , biology , pattern recognition receptor , c type lectin , pathogen , innate immune system , fusion protein , lectin , immune system , pathogen associated molecular pattern , receptor , microbiology and biotechnology , glycoprotein , biochemistry , immunology , gene , recombinant dna
The use of soluble fusion proteins of pattern recognition receptors (PRRs) used in the detection of exogenous and endogenous ligands has helped resolve the roles of PRRs in the innate immune response to pathogens, how they shape the adaptive immune response, and function in maintaining homeostasis. Using the immunoglobulin (Ig) crystallizable fragment (Fc) domain as a fusion partner, the PRR fusion proteins are soluble, stable, easily purified, have increased affinity due to the Fc homodimerization properties, and consequently have been used in a wide range of applications such as flow cytometry, screening of protein and glycan arrays, and immunofluorescent microscopy. This review will predominantly focus on the recognition of pathogens by the cell membrane‐expressed glycan‐binding proteins of the C‐type lectin receptor (CLR) subgroup of PRRs. PRRs bind to conserved pathogen‐associated molecular patterns (PAMPs), such as glycans, usually located within or on the outer surface of the pathogen. Significantly, many glycans structures are identical on both host and pathogen (e.g. the Lewis (Le) X glycan), allowing the use of Fc CLR fusion proteins with known endogenous and/or exogenous ligands as tools to identify pathogen structures that are able to interact with the immune system. Screens of highly purified pathogen‐derived cell wall components have enabled identification of many unique PAMP structures recognized by CLRs. This review highlights studies using Fc CLR fusion proteins, with emphasis on the PAMPs found in fungi, bacteria, viruses, and parasites. The structure and unique features of the different CLR families is presented using examples from a broad range of microbes whenever possible.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here