z-logo
Premium
Conformation control of the histidine kinase BceS of Bacillus subtilis by its cognate ABC‐transporter facilitates need‐based activation of antibiotic resistance
Author(s) -
Koh Alan,
Gibbon Marjorie J.,
Van der Kamp Marc W.,
Pudney Christopher R.,
Gebhard Susanne
Publication year - 2021
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1111/mmi.14607
Subject(s) - histidine kinase , biology , bacillus subtilis , kinase , response regulator , transporter , microbiology and biotechnology , flux (metallurgy) , signal transduction , histidine , biochemistry , bacteria , gene , genetics , enzyme , chemistry , organic chemistry , mutant
Bacteria closely control gene expression to ensure optimal physiological responses to their environment. Such careful gene expression can minimize the fitness cost associated with antibiotic resistance. We previously described a novel regulatory logic in Bacillus subtilis enabling the cell to directly monitor its need for detoxification. This cost‐effective strategy is achieved via a two‐component regulatory system (BceRS) working in a sensory complex with an ABC‐transporter (BceAB), together acting as a flux‐sensor where signaling is proportional to transport activity. How this is realized at the molecular level has remained unknown. Using experimentation and computation we here show that the histidine kinase is activated by piston‐like displacements in the membrane, which are converted to helical rotations in the catalytic core via an intervening HAMP‐like domain. Intriguingly, the transporter was not only required for kinase activation, but also to actively maintain the kinase in its inactive state in the absence of antibiotics. Such coupling of kinase activity to that of the transporter ensures the complete control required for transport flux‐dependent signaling. Moreover, we show that the transporter likely conserves energy by signaling with sub‐maximal sensitivity. These results provide the first mechanistic insights into transport flux‐dependent signaling, a unique strategy for energy‐efficient decision making.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here