Premium
The plant pathogen Pectobacterium atrosepticum contains a functional formate hydrogenlyase‐2 complex
Author(s) -
Finney Alexander J.,
Lowden Rebecca,
Fleszar Michal,
Albareda Marta,
Coulthurst Sarah J.,
Sargent Frank
Publication year - 2019
Publication title -
molecular microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.857
H-Index - 247
eISSN - 1365-2958
pISSN - 0950-382X
DOI - 10.1111/mmi.14370
Subject(s) - biology , formate dehydrogenase , gene , hydrogenase , microbiology and biotechnology , genetics , bacteria , formate , computational biology , biochemistry , enzyme , cofactor , catalysis
Summary Pectobacterium atrosepticum SCRI1043 is a phytopathogenic Gram‐negative enterobacterium. Genomic analysis has identified that genes required for both respiration and fermentation are expressed under anaerobic conditions. One set of anaerobically expressed genes is predicted to encode an important but poorly understood membrane‐bound enzyme termed formate hydrogenlyase‐2 (FHL‐2), which has fascinating evolutionary links to the mitochondrial NADH dehydrogenase (Complex I). In this work, molecular genetic and biochemical approaches were taken to establish that FHL‐2 is fully functional in P. atrosepticum and is the major source of molecular hydrogen gas generated by this bacterium. The FHL‐2 complex was shown to comprise a rare example of an active [NiFe]‐hydrogenase‐4 (Hyd‐4) isoenzyme, itself linked to an unusual selenium‐free formate dehydrogenase in the final complex. In addition, further genetic dissection of the genes encoding the predicted membrane arm of FHL‐2 established surprisingly that the majority of genes encoding this domain are not required for physiological hydrogen production activity. Overall, this study presents P. atrosepticum as a new model bacterial system for understanding anaerobic formate and hydrogen metabolism in general, and FHL‐2 function and structure in particular.