z-logo
Premium
Deep learning–based nondestructive evaluation of reinforcement bars using ground‐penetrating radar and electromagnetic induction data
Author(s) -
Li Xiaofeng,
Liu Hai,
Zhou Feng,
Chen Zhongchang,
Giannakis Iraklis,
Slob Evert
Publication year - 2021
Publication title -
computer‐aided civil and infrastructure engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.773
H-Index - 82
eISSN - 1467-8667
pISSN - 1093-9687
DOI - 10.1111/mice.12798
Subject(s) - ground penetrating radar , emi , bar (unit) , reinforcement , cover (algebra) , concrete cover , radar , range (aeronautics) , acoustics , electromagnetic interference , computer science , artificial intelligence , geology , engineering , structural engineering , materials science , physics , telecommunications , composite material , mechanical engineering , oceanography
This paper proposes a nondestructive evaluation method based on deep learning using combined ground‐penetrating radar (GPR) and electromagnetic induction (EMI) data for autonomic and accurate estimation of the cover thickness and diameter of reinforcement bars. A real‐time object detection algorithm—You Only Look Once–version 3 (YOLO v3)—is adopted to automatically identify the reinforcement bar reflected signals from radargrams, with which the range of the cover thickness is roughly predicted. Subsequently, EMI data, accompanied with the cover thickness range, are imported to a one‐dimensional convolutional neural network (1D CNN), pretrained by calibrated EMI and GPR data, to simultaneously estimate the cover thickness and reinforcement bar diameter. Testing with the on‐site GPR data shows that YOLO v3 is superior to Single Shot Multibox Detector method in GPR hyperbolic signal identification. Testing of 1D CNN with the EMI and GPR data collected in an in‐house sand pit experiment shows that the estimation accuracy of the cover thickness and reinforcement bar diameter is, respectively, 96.8% and 90.3% with a permissible error of 1 mm. Further, an experiment with concrete specimens demonstrates that among the 22 estimated values (including the reinforcement bar diameter and cover thickness), there are 17 values accurately estimated, while the inaccurately estimated values have an error up to 2 mm. The experimental results show that the proposed method can autonomically evaluate the reinforcement bar diameter and cover thickness with a high accuracy.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here