z-logo
Premium
A unified convolutional neural network integrated with conditional random field for pipe defect segmentation
Author(s) -
Wang Mingzhu,
Cheng Jack C. P.
Publication year - 2020
Publication title -
computer‐aided civil and infrastructure engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.773
H-Index - 82
eISSN - 1467-8667
pISSN - 1093-9687
DOI - 10.1111/mice.12481
Subject(s) - conditional random field , artificial intelligence , computer science , convolutional neural network , segmentation , pattern recognition (psychology) , inference , feature (linguistics) , convolution (computer science) , intersection (aeronautics) , deep learning , ground truth , image segmentation , pixel , artificial neural network , field (mathematics) , computer vision , mathematics , engineering , pure mathematics , philosophy , linguistics , aerospace engineering
Semantic segmentation of closed‐circuit television (CCTV) images can facilitate automatic severity assessment of sewer pipe defects by assigning defect labels to each pixel on the image, from which defect types, locations, and geometric information can be obtained. In this study, a unified neural network, namely DilaSeg‐CRF, is proposed by fully integrating a deep convolutional neural network (CNN) with dense conditional random field (CRF) for improving the segmentation accuracy. First, DilaSeg is constructed with dilated convolution and multiscale techniques for producing feature maps with high resolution. The steps of the dense CRF inference algorithm are converted into CNN operations, which are then formulated as recurrent neural network (RNN) layers. The DilaSeg‐CRF is proposed by integrating DilaSeg with the RNN layers. Images containing three common types of sewer defects are collected from CCTV inspection videos and are annotated with ground truth labels, after which the proposed models are trained and evaluated. Experiments demonstrate that the end‐to‐end trainable DilaSeg‐CRF can improve the segmentation significantly, with an increase of 32% and 20% in mean intersection over union (mIoU) values compared with fully convolutional network (FCN‐8s) and DilaSeg, respectively. Our proposed DilaSeg‐CRF also achieves faster inference speed than FCN and eliminates the manual postprocessing for refining the segmentation results.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here