z-logo
Premium
Concrete crack detection using context‐aware deep semantic segmentation network
Author(s) -
Zhang Xinxiang,
Rajan Dinesh,
Story Brett
Publication year - 2019
Publication title -
computer‐aided civil and infrastructure engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.773
H-Index - 82
eISSN - 1467-8667
pISSN - 1093-9687
DOI - 10.1111/mice.12477
Subject(s) - computer science , segmentation , context (archaeology) , artificial intelligence , deep learning , pixel , margin (machine learning) , convolutional neural network , fuse (electrical) , computer vision , cuda , object detection , pattern recognition (psychology) , machine learning , parallel computing , paleontology , electrical engineering , biology , engineering
Abstract Computer‐vision and deep‐learning techniques are being increasingly applied to inspect, monitor, and assess infrastructure conditions including detection of cracks. Traditional vision‐based methods to detect cracks lack accuracy and generalization to work on complicated infrastructural conditions. This paper presents a novel context‐aware deep convolutional semantic segmentation network to effectively detect cracks in structural infrastructure under various conditions. The proposed method applies a pixel‐wise deep semantic segmentation network to segment the cracks on images with arbitrary sizes without retraining the prediction network. Meanwhile, a context‐aware fusion algorithm that leverages local cross‐state and cross‐space constraints is proposed to fuse the predictions of image patches. This method is evaluated on three datasets: CrackForest Dataset (CFD) and Tomorrows Road Infrastructure Monitoring, Management Dataset (TRIMMD) and a Customized Field Test Dataset (CFTD) and achieves Boundary F1 (BF) score of 0.8234, 0.8252, and 0.7937 under 2‐pixel error tolerance margin in CFD, TRIMMD, and CFTD, respectively. The proposed method advances the state‐of‐the‐art performance of BF score by approximately 2.71% in CFD, 1.47% in TRIMMD, and 4.14% in CFTD. Moreover, the averaged processing time of the proposed system is 0.7 s on a typical desktop with Intel ® Quad‐Core™ i7‐7700 CPU@3.6 GHz Processor, 16GB RAM and NVIDIA GeForce GTX 1060 6GB GPU for an image of size 256 × 256 pixels.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here