z-logo
Premium
Convolutional sparse coding‐based deep random vector functional link network for distress classification of road structures
Author(s) -
Maeda Keisuke,
Takahashi Sho,
Ogawa Takahiro,
Haseyama Miki
Publication year - 2019
Publication title -
computer‐aided civil and infrastructure engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.773
H-Index - 82
eISSN - 1467-8667
pISSN - 1093-9687
DOI - 10.1111/mice.12451
Subject(s) - pattern recognition (psychology) , computer science , artificial intelligence , convolutional neural network , feature extraction , support vector machine , classifier (uml) , distress , neural coding , coding (social sciences) , mathematics , statistics , ecology , biology
This paper presents a convolutional sparse coding (CSC)‐based deep random vector functional link network (CSDRN) for distress classification of road structures. The main contribution of this paper is the introduction of CSC into a feature extraction scheme in the distress classification. CSC can extract visual features representing characteristics of target images because it can successfully estimate optimal convolutional dictionary filters and sparse features as visual features by training from a small number of distress images. The optimal dictionaries trained from distress images have basic components of visual characteristics such as edge and line information of distress images. Furthermore, sparse feature maps estimated on the basis of the dictionaries represent both strength of the basic components and location information of regions having their components, and these maps can represent distress images. That is, sparse feature maps can extract key components from distress images that have diverse visual characteristics. Therefore, CSC‐based feature extraction is effective for training from a limited number of distress images that have diverse visual characteristics. The construction of a novel neural network, CSDRN, by the use of a combination of CSC‐based feature extraction and the DRN classifier, which can also be trained from a small dataset, is shown in this paper. Accurate distress classification is realized via the CSDRN.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here