z-logo
Premium
A Bayesian Probabilistic Approach for Acoustic Emission‐Based Rail Condition Assessment
Author(s) -
Wang Junfang,
Liu XiaoZhou,
Ni YiQing
Publication year - 2018
Publication title -
computer‐aided civil and infrastructure engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.773
H-Index - 82
eISSN - 1467-8667
pISSN - 1093-9687
DOI - 10.1111/mice.12316
Subject(s) - bayesian probability , probabilistic logic , structural health monitoring , computer science , bayes' theorem , acoustic emission , data mining , bayesian linear regression , standard deviation , statistics , bayesian inference , artificial intelligence , engineering , mathematics , structural engineering , acoustics , physics
The investigation described in this article aims at developing a Bayesian‐based approach for probabilistic assessment of rail health condition using acoustic emission monitoring data. It comprises the following three phases: (i) formulation of a frequency‐domain structural health index (SHI), via a linear transformation method, tailored to damage‐sensitive frequency bandwidth; (ii) establishment of data‐driven reference models, using Bayesian regression about the real and imaginary parts of the SHI derived with monitoring data from the intact rail; and (iii) quantitative evaluation of discrimination between the new observations representative of current rail health condition and the baseline model predictions in terms of Bayes factor. If the deviation of the new observations from the predictions is within an acceptable tolerance, no damage is flagged, and the new data are further used to update and refine the reference models. If the observations deviate substantially from the model predictions in a probabilistic sense, damage is signaled, damage severity is quantified, and damage location determined. The proposed approach is examined by using field monitoring data acquired from an instrumented railway turnout, and the coincidence between the assessment results and the actual health conditions demonstrates its effectiveness in damage detection, localization, and quantification.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here