Premium
A Test Method for Damage Diagnosis of Suspension Bridge Suspender Cables
Author(s) -
An Yonghui,
Spencer B.F.,
Ou Jinping
Publication year - 2015
Publication title -
computer‐aided civil and infrastructure engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.773
H-Index - 82
eISSN - 1467-8667
pISSN - 1093-9687
DOI - 10.1111/mice.12144
Subject(s) - structural engineering , engineering , curvature , stiffness , noise (video) , bridge (graph theory) , suspension (topology) , finite element method , reduction (mathematics) , computer science , mathematics , artificial intelligence , medicine , geometry , homotopy , pure mathematics , image (mathematics)
Suspender cables are one of the most vulnerable components of a suspension bridge; therefore, development of effective methods for damage detection is imperative. Many previous damage detection methods require an accurate finite element model, which is often difficult to obtain. This article proposes a model‐free test method for damage diagnosis of suspender cables that avoids this problem. The method includes two procedures: the mean normalized curvature difference procedure and the curvature difference probability procedure. Numerical results for single and multiple damage cases indicate that: (1) both procedures can be effective for damage diagnosis of suspender cables; (2) small damage can be more easily diagnosed in long suspender cables than short ones, for example, 5% stiffness reduction in long suspender cables can be diagnosed; and (3) noise is generally not a problem, because the signal‐to‐noise ratio can be improved by increasing the pulse excitation magnitude for a suspender cable. The proposed test method does not eliminate the need for manual inspection, but changes it from observation to a more quantified method. All of these points increase the potential of the proposed method for practical applications.