Premium
Identification of Instantaneous Modal Parameter of Time‐Varying Systems via a Wavelet‐Based Approach and Its Application
Author(s) -
Su W. C.,
Liu C. Y.,
Huang C. S.
Publication year - 2014
Publication title -
computer‐aided civil and infrastructure engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.773
H-Index - 82
eISSN - 1467-8667
pISSN - 1093-9687
DOI - 10.1111/mice.12037
Subject(s) - modal , substructure , wavelet , autoregressive model , basis function , earthquake shaking table , basis (linear algebra) , structural engineering , modal testing , modal analysis , computer science , engineering , algorithm , mathematics , finite element method , mathematical analysis , statistics , geometry , artificial intelligence , chemistry , polymer chemistry
Abstract This work presents an efficient approach using time‐varying autoregressive with exogenous input (TVARX) model and a substructure technique to identify the instantaneous modal parameters of a linear time‐varying structure and its substructures. The identified instantaneous natural frequencies can be used to identify earthquake damage to a building, including the specific floors that are damaged. An appropriate TVARX model of the dynamic responses of a structure or substructure is established using a basis function expansion and regression approach combined with continuous wavelet transform. The effectiveness of the proposed approach is validated using numerically simulated earthquake responses of a five‐storey shear building with time‐varying stiffness and damping coefficients. In terms of accuracy in determining the instantaneous modal parameters of a structure from noisy responses, the proposed approach is superior to typical basis function expansion and regression approach. The proposed method is further applied to process the dynamic responses of an eight‐storey steel frame in shaking table tests to identify its instantaneous modal parameters and to locate the storeys whose columns yielded under a strong base excitation.