Premium
Tree, sex and size: Ecological determinants of male vs. female fecundity in three Fagus sylvatica stands
Author(s) -
OddouMuratorio Sylvie,
Gauzere Julie,
Bontemps Aurore,
Rey JeanFrançois,
Klein Etienne K.
Publication year - 2018
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1111/mec.14770
Subject(s) - biology , fecundity , beech , fagus sylvatica , ecology , genetic variation , population , genetic drift , mating system , gene flow , intraspecific competition , zoology , mating , demography , genetics , gene , sociology
Interindividual variation in fecundities has major consequences on population evolutionary potential, through genetic drift and selection. Using two spatially explicit mating models that analyse the genotypes of seeds and seedlings, we investigated the variation of male and female fecundities within and among three European beech ( Fagus sylvatica ) stands situated along an altitudinal gradient. Female and male individual fecundity distributions were both skewed in this monoecious species, and we found a higher variance in female as compared to male fecundities. Both female and male fecundities increased with tree size and decreased with density and competition in the neighbourhood, the details of these effects suggesting sex‐specific strategies to deal with the impact of limited resource on fecundity. The studied populations were functionally male‐biased. Among‐individual variations in functional gender were not driven by tree size but by density and competition in the neighbourhood. Femaleness decreased under limited resource availability, an expected consequence of the higher cost of female reproduction. Considering the variation of gene flow and genetic drift across elevation, our results suggest that the adaptive potential could be enhanced by low genetic drift at low elevation, and by high pollen‐mediated gene flow at high elevation. Finally, this study predicts a more efficient response to selection for traits related to male vs. female fitness, for a given selection intensity.