Premium
Ecological disturbance influences adaptive divergence despite high gene flow in golden perch ( Macquaria ambigua ): Implications for management and resilience to climate change
Author(s) -
Attard Catherine R. M.,
Brauer Chris J.,
SandovalCastillo Jonathan,
Faulks Leanne K.,
Unmack Peter J.,
Gilligan Dean M.,
Beheregaray Luciano B.
Publication year - 2018
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1111/mec.14438
Subject(s) - biology , ecology , disturbance (geology) , generalist and specialist species , perch , gene flow , genetic divergence , biological dispersal , fishery , population , habitat , genetic variation , genetic diversity , paleontology , biochemistry , demography , sociology , fish <actinopterygii> , gene
Populations that are adaptively divergent but maintain high gene flow may have greater resilience to environmental change as gene flow allows the spread of alleles that have already been tested elsewhere. In addition, populations naturally subjected to ecological disturbance may already hold resilience to future environmental change. Confirming this necessitates ecological genomic studies of high dispersal, generalist species. Here we perform one such study on golden perch ( Macquaria ambigua ) in the Murray‐Darling Basin ( MDB ), Australia, using a genome‐wide SNP data set. The MDB spans across arid to wet and temperate to subtropical environments, with low to high ecological disturbance in the form of low to high hydrological variability. We found high gene flow across the basin and three populations with low neutral differentiation. Genotype–environment association analyses detected adaptive divergence predominantly linked to an arid region with highly variable riverine flow, and candidate loci included functions related to fat storage, stress and molecular or tissue repair. The high connectivity of golden perch in the MDB will likely allow locally adaptive traits in its most arid and hydrologically variable environment to spread and be selected in localities that are predicted to become arid and hydrologically variable in future climates. High connectivity in golden perch is likely due to their generalist life history and efforts of fisheries management. Our study adds to growing evidence of adaptation in the face of gene flow and highlights the importance of considering ecological disturbance and adaptive divergence in biodiversity management.