z-logo
Premium
Comparative ecological transcriptomics and the contribution of gene expression to the evolutionary potential of a threatened fish
Author(s) -
Brauer Chris J.,
Unmack Peter J.,
Beheregaray Luciano B.
Publication year - 2017
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1111/mec.14432
Subject(s) - biology , phenotypic plasticity , genetic variation , evolutionary biology , genetic diversity , gene expression , gene , population , genetics , rna seq , phylogenetic tree , threatened species , transcriptome , ecology , demography , sociology , habitat
Abstract Understanding whether small populations with low genetic diversity can respond to rapid environmental change via phenotypic plasticity is an outstanding research question in biology. RNA sequencing ( RNA ‐seq) has recently provided the opportunity to examine variation in gene expression, a surrogate for phenotypic variation, in nonmodel species. We used a comparative RNA ‐seq approach to assess expression variation within and among adaptively divergent populations of a threatened freshwater fish, Nannoperca australis , found across a steep hydroclimatic gradient in the Murray–Darling Basin, Australia. These populations evolved under contrasting selective environments (e.g., dry/hot lowland; wet/cold upland) and represent opposite ends of the species’ spectrum of genetic diversity and population size. We tested the hypothesis that environmental variation among isolated populations has driven the evolution of divergent expression at ecologically important genes using differential expression ( DE ) analysis and an anova ‐based comparative phylogenetic expression variance and evolution model framework based on 27,425 de novo assembled transcripts. Additionally, we tested whether gene expression variance within populations was correlated with levels of standing genetic diversity. We identified 290 DE candidate transcripts, 33 transcripts with evidence for high expression plasticity, and 50 candidates for divergent selection on gene expression after accounting for phylogenetic structure. Variance in gene expression appeared unrelated to levels of genetic diversity. Functional annotation of the candidate transcripts revealed that variation in water quality is an important factor influencing expression variation for N. australis . Our findings suggest that gene expression variation can contribute to the evolutionary potential of small populations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here