Premium
Urban landscapes can change virus gene flow and evolution in a fragmentation‐sensitive carnivore
Author(s) -
FountainJones Nicholas M.,
Craft Meggan E.,
Funk W. Chris,
Kozakiewicz Chris,
Trumbo Daryl R.,
Boydston Erin E.,
Lyren Lisa M.,
Crooks Kevin,
Lee Justin S.,
VandeWoude Sue,
Carver Scott
Publication year - 2017
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1111/mec.14375
Subject(s) - carnivore , wildlife , biology , habitat , habitat fragmentation , ecology , fragmentation (computing) , transmission (telecommunications) , host (biology) , wildlife corridor , pathogen , predation , genetics , electrical engineering , engineering
Urban expansion has widespread impacts on wildlife species globally, including the transmission and emergence of infectious diseases. However, there is almost no information about how urban landscapes shape transmission dynamics in wildlife. Using an innovative phylodynamic approach combining host and pathogen molecular data with landscape characteristics and host traits, we untangle the complex factors that drive transmission networks of feline immunodeficiency virus (FIV) in bobcats ( Lynx rufus ). We found that the urban landscape played a significant role in shaping FIV transmission. Even though bobcats were often trapped within the urban matrix, FIV transmission events were more likely to occur in areas with more natural habitat elements. Urban fragmentation also resulted in lower rates of pathogen evolution, possibly owing to a narrower range of host genotypes in the fragmented area. Combined, our findings show that urban landscapes can have impacts on a pathogen and its evolution in a carnivore living in one of the most fragmented and urban systems in North America. The analytical approach used here can be broadly applied to other host–pathogen systems, including humans.