z-logo
Premium
Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field‐based tree experiment
Author(s) -
Nguyen Nhu H.,
Williams Laura J.,
Vincent John B.,
Stefanski Artur,
CavenderBares Jeannine,
Messier Christian,
Paquette Alain,
Gravel Dominique,
Reich Peter B.,
Kennedy Peter G.
Publication year - 2016
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1111/mec.13719
Subject(s) - species richness , biology , biodiversity , ecology , gymnosperm , phylogenetic diversity , botany , plant community , species diversity , phylogenetic tree , old field , biochemistry , gene
Exploring the link between above‐ and belowground biodiversity has been a major theme of recent ecological research, due in large part to the increasingly well‐recognized role that soil microorganisms play in driving plant community processes. In this study, we utilized a field‐based tree experiment in Minnesota, USA , to assess the effect of changes in plant species richness and phylogenetic diversity on the richness and composition of both ectomycorrhizal and saprotrophic fungal communities. We found that ectomycorrhizal fungal species richness was significantly positively influenced by increasing plant phylogenetic diversity, while saprotrophic fungal species richness was significantly affected by plant leaf nitrogen content, specific root length and standing biomass. The increasing ectomycorrhizal fungal richness associated with increasing plant phylogenetic diversity was driven by the combined presence of ectomycorrhizal fungal specialists in plots with both gymnosperm and angiosperm hosts. Although the species composition of both the ectomycorrhizal and saprotrophic fungal communities changed significantly in response to changes in plant species composition, the effect was much greater for ectomycorrhizal fungi. In addition, ectomycorrhizal but not saprotrophic fungal species composition was significantly influenced by both plant phylum (angiosperm, gymnosperm, both) and origin (Europe, America, both). The phylum effect was caused by differences in ectomycorrhizal fungal community composition, while the origin effect was attributable to differences in community heterogeneity. Taken together, this study emphasizes that plant‐associated effects on soil fungal communities are largely guild‐specific and provides a mechanistic basis for the positive link between plant phylogenetic diversity and ectomycorrhizal fungal richness.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here