z-logo
Premium
Microsatellite evolutionary rate and pattern in Schistocerca gregaria inferred from direct observation of germline mutations
Author(s) -
Chapuis M.P.,
Plantamp C.,
Streiff R.,
Blondin L.,
Piou C.
Publication year - 2015
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1111/mec.13465
Subject(s) - biology , mutation rate , microsatellite , genetics , schistocerca , population , evolutionary biology , effective population size , human evolutionary genetics , allele , population genetics , locus (genetics) , rate of evolution , genetic variation , phylogenetic tree , phylogenetics , ecology , locust , gene , demography , sociology
Unravelling variation among taxonomic orders regarding the rate of evolution in microsatellites is crucial for evolutionary biology and population genetics research. The mean mutation rate of microsatellites tends to be lower in arthropods than in vertebrates, but data are scarce and mostly concern accumulation of mutations in model species. Based on parent–offspring segregations and a hierarchical Bayesian model, the mean rate of mutation in the orthopteran insect Schistocerca gregaria was estimated at 2.1e −4 per generation per untranscribed dinucleotide locus. This is close to vertebrate estimates and one order of magnitude higher than estimates from species of other arthropod orders, such as Drosophila melanogaster and Daphnia pulex . We also found evidence of a directional bias towards expansions even for long alleles and exceptionally large ranges of allele sizes. Finally, at transcribed microsatellites, the mean rate of mutation was half the rate found at untranscribed loci and the mutational model deviated from that usually considered, with most mutations involving multistep changes that avoid disrupting the reading frame. Our direct estimates of mutation rate were discussed in the light of peculiar biological and genomic features of S. gregaria , including specificities in mismatch repair and the dependence of its activity to allele length. Shedding new light on the mutational dynamics of grasshopper microsatellites is of critical importance for a number of research fields. As an illustration, we showed how our findings improve microsatellite application in population genetics, by obtaining a more precise estimation of S. gregaria effective population size from a published data set based on the same microsatellites.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here