Premium
Repeatability, ephemerality and inconvenient truths in the speciation process
Author(s) -
Cutter Asher D.
Publication year - 2015
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1111/mec.13163
Subject(s) - biology , evolutionary biology , genetic algorithm , population , natural selection , ecological speciation , ecology , character displacement , reproductive isolation , gene flow , genetic variation , sympatric speciation , sympatry , genetics , demography , sociology , gene
Everyone appreciates the happy fiction that species conform to the simple theoretical convenience of a single panmictic population. In speciation genetics, a further standard simplification is that it is only those genetic differences that are fixed between diverging populations that need concern us in order to understand the accumulation of intrinsic barriers to reproduction. To a first approximation, of course, both of these assumptions are appropriate and theory based on them provides compelling insights into diverse evolutionary phenomena (Orr & Turelli [Orr HA, 2001]). But what else can we learn about the begetting of biodiversity, speciation, by considering explicitly some less convenient realities of natural populations? Specifically, how does genetic variation at incompatibility loci within a species influence interspecies hybridization upon secondary contact? And, in nature, how repeatable among distinct bouts of secondary contact are the genomic outcomes of hybridization? Mandeville et al . ([Mandeville EG, 2015]) tackle exactly this question in their new study in M olecular Ecology on five species of suckers, fish of the genus C atostomus , that overlap sympatrically in different portions of their subdivided ranges that occupy different rivers. They document substantial genomic heterogeneity in realized hybridization in nature, both among species pairs and among the source populations for hybrids of a given species pair. This imperfect repeatability of episodes of hybridization implies greater permeability of species barriers in some parts of their range, with intriguing consequences for how the integrity of species as independently evolving units could be susceptible to collapse.