Premium
Tracking climate change in a dispersal‐limited species: reduced spatial and genetic connectivity in a montane salamander
Author(s) -
VeloAntón G.,
Parra J. L.,
ParraOlea G.,
Zamudio K. R.
Publication year - 2013
Publication title -
molecular ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.619
H-Index - 225
eISSN - 1365-294X
pISSN - 0962-1083
DOI - 10.1111/mec.12310
Subject(s) - biological dispersal , ecology , biology , population , biodiversity , genetic structure , salamander , genetic diversity , demography , sociology
Tropical montane taxa are often locally adapted to very specific climatic conditions, contributing to their lower dispersal potential across complex landscapes. Climate and landscape features in montane regions affect population genetic structure in predictable ways, yet few empirical studies quantify the effects of both factors in shaping genetic structure of montane‐adapted taxa. Here, we considered temporal and spatial variability in climate to explain contemporary genetic differentiation between populations of the montane salamander, P seudoeurycea leprosa . Specifically, we used ecological niche modelling ( ENM ) and measured spatial connectivity and gene flow (using both mt DNA and microsatellite markers) across extant populations of P . leprosa in the T rans‐ M exican V olcanic B elt ( TVB ). Our results indicate significant spatial and genetic isolation among populations, but we cannot distinguish between isolation by distance over time or current landscape barriers as mechanisms shaping population genetic divergences. Combining ecological niche modelling, spatial connectivity analyses, and historical and contemporary genetic signatures from different classes of genetic markers allows for inference of historical evolutionary processes and predictions of the impacts future climate change will have on the genetic diversity of montane taxa with low dispersal rates. P seudoeurycea leprosa is one montane species among many endemic to this region and thus is a case study for the continued persistence of spatially and genetically isolated populations in the highly biodiverse TVB of central M exico.