z-logo
Premium
Accretion of the asteroids: Implications for their thermal evolution
Author(s) -
Weidenschilling S. J.
Publication year - 2019
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/maps.13270
Subject(s) - planetesimal , asteroid , accretion (finance) , parent body , chondrite , astrophysics , meteorite , thermal , asteroid belt , radius , astrobiology , physics , solar system , thermodynamics , computer security , computer science
Thermal models of asteroids generally assume that they accreted either instantaneously or over an extended interval with a prescribed growth rate. It is conventionally assumed that the onset of accretion of chondrite parent bodies was delayed until a substantial fraction of the initial 26 Al had decayed. However, this interval is not consistent with the early melting, and differentiation of parent bodies of iron meteorites. Formation time scales are tested by dynamical simulations of accretion from small primary planetesimals. Gravitational accretion yields rapid runaway growth of large planetary embryos until most smaller bodies are depleted. In a given simulation, all asteroid‐sized bodies have comparable growth times, regardless of size. For plausible parameters, growth times are shorter than the lifetime of 26 Al, consistent with thermal models that assume instantaneous accretion. Rapid growth after planetesimal formation is consistent with differentiation of parent bodies of iron meteorites, but not with the assumed delay in formation of chondritic bodies. After the initial growth stage, there is an interval of slower evolution until the belt is stirred and the embryos are dynamically removed. During this interval, a fraction of asteroid‐sized bodies experience large accretional impacts, allowing bodies of the same final size to have very different histories of radius versus time. Accretion from small primary planetesimals leaves some fraction of material in bodies small enough to preserve CAI s while avoiding heating by 26 Al. Unheated material can be a significant fraction of the mass that remains after large embryos are removed from the Main Belt.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here