Premium
The reaction of carbonates in contact with laser‐generated, superheated silicate melts: Constraining impact metamorphism of carbonate‐bearing target rocks
Author(s) -
Hamann Christopher,
Bläsing Saskia,
Hecht Lutz,
Schäffer Sebastian,
Deutsch Alex,
Osterholz Jens,
Lexow Bernd
Publication year - 2018
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/maps.13133
Subject(s) - silicate , carbonate , calcite , geology , mineralogy , carbonate minerals , dolomite , silicate minerals , chemical engineering , materials science , metallurgy , engineering
We simulated entrainment of carbonates (calcite, dolomite) in silicate impact melts by 1‐bar laser melting of silicate–carbonate composite targets, using sandstone, basalt, calcite marble, limestone, dolomite marble, and iron meteorite as starting materials. We demonstrate that carbonate assimilation by silicate melts of variable composition is extremely fast (seconds to minutes), resulting in contamination of silicate melts with carbonate‐derived CaO and MgO and release of CO 2 at the silicate melt–carbonate interface. We identify several processes, i.e., (1) decomposition of carbonates releases CO 2 and produces residual oxides (CaO, MgO); (2) incorporation of residual oxides from proximally dissociating carbonates into silicate melts; (3) rapid back‐reactions between residual CaO and CO 2 produce idiomorphic calcite crystallites and porous carbonate quench products; (4) high‐temperature reactions between Ca‐contaminated silicate melts and carbonates yield typical skarn minerals and residual oxide melts; (5) mixing and mingling between Ca‐ or Ca,Mg‐contaminated and Ca‐ or Ca,Mg‐normal silicate melts; (6) precipitation of Ca‐ or Ca,Mg‐rich silicates from contaminated silicate melts upon quenching. Our experiments reproduce many textural and compositional features of typical impact melts originating from silicate–carbonate targets. They reinforce hypotheses that thermal decomposition of carbonates, rapid back‐reactions between decomposition products, and incorporation of residual oxides into silicate impact melts are prevailing processes during impact melting of mixed silicate–carbonate targets. However, by comparing our results with previous studies and thermodynamic considerations on the phase diagrams of calcite and quartz, we envisage that carbonate impact melts are readily produced during adiabatic decompression from high shock pressure, but subsequently decompose due to heat influx from coexisting silicate impact melts or hot breccia components. Under certain circumstances, postshock conditions may favor production and conservation of carbonate impact melts. We conclude that the response of mixed carbonate–silicate targets to impact might involve melting and decomposition of carbonates, the dominant response being governed by a complex variety of factors.