z-logo
Premium
Did 26 Al and impact‐induced heating differentiate Mercury?
Author(s) -
Bhatia G. K.,
Sahijpal S.
Publication year - 2017
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/maps.12789
Subject(s) - chondrite , mantle (geology) , astrobiology , terrestrial planet , mercury (programming language) , enstatite , mars exploration program , planetary differentiation , solar system , planet , silicate , geology , mantle convection , meteorite , geochemistry , astrophysics , physics , tectonics , astronomy , lithosphere , paleontology , computer science , programming language
Numerical models dealing with the planetary scale differentiation of Mercury are presented with the short‐lived nuclide, 26 Al, as the major heat source along with the impact‐induced heating during the accretion of planets. These two heat sources are considered to have caused differentiation of Mars, a planet with size comparable to Mercury. The chronological records and the thermal modeling of Mars indicate an early differentiation during the initial ~1 million years (Ma) of the formation of the solar system. We theorize that in case Mercury also accreted over an identical time scale, the two heat sources could have differentiated the planets. Although unlike Mars there is no chronological record of Mercury's differentiation, the proposed mechanism is worth investigation. We demonstrate distinct viable scenarios for a wide range of planetary compositions that could have produced the internal structure of Mercury as deduced by the MESSENGER mission, with a metallic iron (Fe‐Ni‐FeS) core of radius ~2000 km and a silicate mantle thickness of ~400 km. The initial compositions were derived from the enstatite and CB (Bencubbin) chondrites that were formed in the reducing environments of the early solar system. We have also considered distinct planetary accretion scenarios to understand their influence on thermal processing. The majority of our models would require impact‐induced mantle stripping of Mercury by hit and run mechanism with a protoplanet subsequent to its differentiation in order to produce the right size of mantle. However, this can be avoided if we increase the Fe‐Ni‐FeS contents to ~71% by weight. Finally, the models presented here can be used to understand the differentiation of Mercury‐like exoplanets and the planetary embryos of Venus and Earth.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here