Premium
Weathering of ordinary chondrites from Oman: Correlation of weathering parameters with 14 C terrestrial ages and a refined weathering scale
Author(s) -
Zurfluh Florian J.,
Hofmann Beda A.,
Gnos Edwin,
Eggenberger Urs,
Jull A. J. Timothy
Publication year - 2016
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/maps.12690
Subject(s) - weathering , chondrite , meteorite , geology , mineralogy , population , geochemistry , astrobiology , physics , demography , sociology
Abstract We have investigated 128 14 C‐dated ordinary chondrites from Oman for macroscopically visible weathering parameters, for thin section‐based weathering degrees, and for chemical weathering parameters as analyzed with handheld X‐ray fluorescence. These 128 14 C‐dated meteorites show an abundance maximum of terrestrial age at 19.9 ka, with a mean of 21.0 ka and a pronounced lack of samples between 0 and 10 ka. The weathering degree is evaluated in thin section using a refined weathering scale based on the current W0 to W6 classification of Wlotzka (1993), with five newly included intermediate steps resulting in a total of nine (formerly six) steps. We find significant correlations between terrestrial ages and several macroscopic weathering parameters. The correlation of various chemical parameters including Sr and Ba with terrestrial age is not very pronounced. The microscopic weathering degree of metal and sulfides with newly added intermediate steps shows the best correlation with 14 C terrestrial ages, demonstrating the significance of the newly defined weathering steps. We demonstrate that the observed 14 C terrestrial age distribution can be modeled from the abundance of meteorites with different weathering degrees, allowing the evaluation of an age‐frequency distribution for the whole meteorite population.