z-logo
Premium
Impact melting of the largest known enstatite meteorite: Al Haggounia 001, a fossil EL chondrite
Author(s) -
Rubin Alan E.
Publication year - 2016
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/maps.12679
Subject(s) - chondrule , meteorite , enstatite , geology , troilite , silicate , chondrite , pyroxene , shock metamorphism , geochemistry , partial melting , fractional crystallization (geology) , plagioclase , melt inclusions , mineralogy , olivine , astrobiology , basalt , chemistry , quartz , paleontology , physics , organic chemistry
Al Haggounia 001 and paired specimens (including Northwest Africa [ NWA ] 2828 and 7401) are part of a vesicular, incompletely melted, EL chondrite impact melt rock with a mass of ~3 metric tons. The meteorite exhibits numerous shock effects including (1) development of undulose to weak mosaic extinction in low‐Ca pyroxene; (2) dispersion of metal‐sulfide blebs within silicates causing “darkening”; (3) incomplete impact melting wherein some relict chondrules survived; (4) vaporization of troilite, resulting in S 2 bubbles that infused the melt; (5) formation of immiscible silicate and metal‐sulfide melts; (6) shock‐induced transportation of the metal‐sulfide melt to distances >10 cm; (7) partial resorption of relict chondrules and coarse silicate grains by the surrounding silicate melt; (8) crystallization of enstatite in the matrix and as overgrowths on relict silicate grains and relict chondrules; (9) crystallization of plagioclase from the melt; and (10) quenching of the vesicular silicate melt. The vesicular samples lost almost all of their metal during the shock event and were less susceptible to terrestrial weathering; in contrast, the samples in which the metal melt accumulated became severely weathered. Literature data indicate the meteorite fell ~23,000 yr ago; numerous secondary phases formed during weathering. Both impact melting and weathering altered the meteorite's bulk chemical composition: e.g., impact melting and loss of a metal‐sulfide melt from NWA 2828 is responsible for bulk depletions in common siderophile elements and in Mn (from alabandite); weathering of oldhamite caused depletions in many rare earth elements; the growth of secondary phases caused enrichments in alkalis, Ga, As, Se, and Au.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here