z-logo
Premium
Pristine stratospheric collection of interplanetary dust on an oil‐free polyurethane foam substrate
Author(s) -
Messenger Scott,
NakamuraMessenger Keiko,
Keller Lindsay P.,
Clemett Simon J.
Publication year - 2015
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/maps.12473
Subject(s) - interplanetary dust cloud , materials science , silicone oil , particle (ecology) , astrobiology , mineralogy , solar system , geology , composite material , physics , oceanography
We performed chemical, mineralogical, and isotopic studies of the first interplanetary dust particles (IDPs) collected in the stratosphere without the use of silicone oil. The collection substrate, polyurethane foam, effectively traps impacting particles, but the lack of an embedding medium results in significant particle fragmentation. Two dust particles found on the collector exhibit the typical compositional and mineralogical properties of chondritic porous interplanetary dust particles (CP‐IDPs). Hydrogen and nitrogen isotopic imaging revealed isotopic anomalies of typical magnitude and spatial variability observed in previous CP‐IDP studies. Oxygen isotopic imaging shows that individual mineral grains and glass with embedded metal and sulfide (GEMS) grains are dominated by solar system materials. No systematic differences are observed in element abundance patterns of GEMS grains from the dry collection versus silicone oil‐collected IDPs. This initial study establishes the validity of a new IDP collection substrate that avoids the use of silicone oil as a collection medium, removing the need for this problematic contaminant and the organic solvents necessary to remove it. Additional silicone oil‐free collections of this type are needed to determine more accurate bulk element abundances of IDPs and to examine the indigenous soluble organic components of IDPs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here