Premium
Shock and annealing in the amphibole‐ and mica‐bearing R chondrites
Author(s) -
Rubin Alan E.
Publication year - 2014
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/maps.12315
Subject(s) - geology , hornblende , plagioclase , phlogopite , geochemistry , amphibole , pyroxene , chromite , olivine , mineralogy , chondrite , biotite , meteorite , mantle (geology) , quartz , paleontology , physics , astronomy
MIL 11207 (R6) and LAP 04840 (R6) contain hornblende and phlogopite; MIL 07440 (R6) contains accessory titan‐phlogopite and no hornblende. All three meteorites have been shocked: MIL 11207 contains extensive sulfide veins, pyroxene that formed from dehydrated hornblende, and an extensive network of plagioclase glass; MIL 07440 contains chromite‐plagioclase assemblages, chromite veinlets and blebs, pincer‐shaped plagioclase patches, but no sulfide veins; LAP 04840 contains olivine grains with chromite‐bleb‐laden cores and opaque‐free rims, rare grains of pyroxene that formed from dehydrated hornblende, and no sulfide veins. These meteorites appear to have been heated to maximum temperatures of approximately 700–900 °C under conditions of moderately high PH 2 O (perhaps 250–500 bars). All three samples underwent postshock annealing. During this process, olivine crystal lattices healed (giving the rocks the appearance of shock‐stage S1), and diffusion of Fe and S from thin sulfide veins to coarse sulfide grains caused the veins to disappear in MIL 07440 and LAP 04840. This latter process apparently also occurred in most S1–S2 ordinary chondrites of high petrologic type. The pressure–temperature conditions responsible for forming the amphibole and mica in these rocks may have been present at depths of a few tens of kilometers (as suggested in the literature). A giant impact or a series of smaller impacts would then have been required to excavate the hornblende‐ and biotite‐bearing rocks and bring them closer to the surface. It was in that latter location where the samples were shocked, deposited in a hot ejecta blanket of low thermal diffusivity, and annealed.