z-logo
Premium
Multiple melting in a four‐layered barred‐olivine chondrule with compositionally heterogeneous glass from LL 3.0 Semarkona
Author(s) -
Rubin Alan E.
Publication year - 2013
Publication title -
meteoritics and planetary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.09
H-Index - 100
eISSN - 1945-5100
pISSN - 1086-9379
DOI - 10.1111/maps.12069
Subject(s) - chondrule , olivine , geology , dissolution , mineralogy , chondrite , materials science , meteorite , geochemistry , chemical engineering , astrobiology , physics , engineering
Chondrule K7p from LL 3.0 Semarkona consists of four nested barred‐olivine ( BO ) chondrules. The innermost BO chondrule (chondrule 1) formed by complete melting of an olivine‐rich dustball. After formation, the chondrule was incorporated into another olivine‐rich dustball. A second heating event caused this second dustball to melt; the mesostasis and some of the olivine in chondrule 1 were probably also melted at this time, but the chondrule 1 structure remained largely intact. At this stage, the object was an enveloping compound BO chondrule. This two‐step process of melting and dustball enshrouding repeated two more times. The different proportions of olivine and glass in chondrules 1–4 suggest that the individual precursor dustballs differed in the amounts of chondrule fragments they contained and the mineral proportions in those fragments. The final dustball (which ultimately formed chondrule 4) was somewhat more ferroan; after melting, crystallizing, and quenching, chondrule 4 contained olivine and glass with higher FeO and MnO contents than those of the earlier formed chondrules. Subsequent aqueous alteration on the LL parent body transformed the abundant metal blebs and stringers at the chondrule surface into carbide, iron oxide, and minor Ni‐rich metal. Portions of the mesostasis underwent dissolution, producing holes and adjacent blades of more resistant material. Much of the glass in the chondrule remained isotropic, even after minor hydration and leaching. The sharp, moderately lobate boundary between the extensively altered mesostasis and the isotropic glass represents the reaction front beyond which there was little or no glass dissolution.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here