Premium
Relative arbitrage: Sharp time horizons and motion by curvature
Author(s) -
Larsson Martin,
Ruf Johannes
Publication year - 2021
Publication title -
mathematical finance
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.98
H-Index - 81
eISSN - 1467-9965
pISSN - 0960-1627
DOI - 10.1111/mafi.12303
Subject(s) - arbitrage , horizon , curvature , economics , portfolio , mathematics , mathematical economics , financial economics , geometry
We characterize the minimal time horizon over which any equity market with d ≥ 2 stocks and sufficient intrinsic volatility admits relative arbitrage with respect to the market portfolio. If d ∈ { 2 , 3 } , the minimal time horizon can be computed explicitly, its value being zero if d = 2 and3 / ( 2 π )if d = 3 . If d ≥ 4 , the minimal time horizon can be characterized via the arrival time function of a geometric flow of the unit simplex in R d that we call the minimum curvature flow.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom