z-logo
Premium
Value‐at‐Risk bounds with two‐sided dependence information
Author(s) -
Lux Thibaut,
Rüschendorf Ludger
Publication year - 2019
Publication title -
mathematical finance
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.98
H-Index - 81
eISSN - 1467-9965
pISSN - 0960-1627
DOI - 10.1111/mafi.12192
Subject(s) - copula (linguistics) , upper and lower bounds , value at risk , marginal distribution , joint probability distribution , mathematics , duality (order theory) , econometrics , tail dependence , marginal value , dual (grammatical number) , mathematical optimization , economics , risk management , random variable , statistics , combinatorics , multivariate statistics , art , mathematical analysis , management , literature , microeconomics
Value‐at‐Risk (VaR) bounds for aggregated risks have been derived in the literature in settings where, besides the marginal distributions of the individual risk factors, one‐sided bounds for the joint distribution or the copula of the risks are available. In applications, it turns out that these improved standard bounds on VaR tend to be too wide to be relevant for practical applications, especially when the number of risk factors is large or when the dependence restriction is not strong enough. In this paper, we develop a method to compute VaR bounds when besides the marginal distributions of the risk factors, two‐sided dependence information in form of an upper and a lower bound on the copula of the risk factors is available. The method is based on a relaxation of the exact dual bounds that we derive by means of the Monge–Kantorovich transportation duality. In several applications, we illustrate that two‐sided dependence information typically leads to strongly improved bounds on the VaR of aggregations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom