z-logo
Premium
Nanographene oxides carrying antisense walR RNA regulates the Enterococcus faecalis biofilm formation and its susceptibility to chlorhexidine
Author(s) -
Wu S.,
Liu Y.,
Lei L.,
Zhang H.
Publication year - 2020
Publication title -
letters in applied microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.698
H-Index - 110
eISSN - 1472-765X
pISSN - 0266-8254
DOI - 10.1111/lam.13354
Subject(s) - biofilm , enterococcus faecalis , microbiology and biotechnology , chlorhexidine , transformation (genetics) , root canal , rna , polyethylenimine , chemistry , biology , bacteria , transfection , gene , escherichia coli , biochemistry , medicine , genetics , dentistry
Enterococcus faecalis is the dominant pathogen for persistent periapical periodontitis. The chlorhexidine (CHX) is used as conversional irrigation agents during endodontic root canal therapy. It was reported that the antisense walR RNA (AS walR ) suppressed the biofilm organization. The aim of this study was to investigate the antimicrobial effects of novel graphene oxide (GO)‐polyethylenimine (PEI)‐based antisense walR (AS walR ) on the inhibition of E. faecalis biofilm and its susceptibility to chlorhexidine. The recombinant AS walR plasmids were modified with a gene encoding enhanced green fluorescent protein (AS walR ‐eGFP) as a reporter gene so that the transformation efficiency could be evaluated by the fluorescence intensity. The GO‐PEI‐based AS walR vector transformation strategy was developed to be transformed into E. faecalis and to over‐produce AS walR in biofilms. Colony forming units (CFU) and confocal laser scanning microscopy were used to investigate whether the antibacterial properties of antisense walR interference strategy sensitize E. faecalis biofilm to the CHX. The results indicated that overexpression of AS walR by GO‐PEI‐based transformation strategy could inhibit biofilm formation, decrease the EPS synthesis and increase the susceptibility of E. faecalis biofilms to CHX. Our reports demonstrated that antisense walR RNA will be a supplementary strategy in treating E. faecalis with irrigation agents.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here