z-logo
open-access-imgOpen Access
Evaluation of an HMGA2 variant for pleiotropic effects on height and metabolic traits in ponies
Author(s) -
Norton Elaine M.,
Avila Felipe,
Schultz Nichol E.,
Mickelson James R.,
Geor Ray J.,
McCue Molly E.
Publication year - 2019
Publication title -
journal of veterinary internal medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.356
H-Index - 103
eISSN - 1939-1676
pISSN - 0891-6640
DOI - 10.1111/jvim.15403
Subject(s) - heritability , insulin resistance , candidate gene , genetics , metabolic syndrome , medicine , biology , insulin , obesity , gene
Background Ponies are highly susceptible to metabolic derangements including hyperinsulinemia, insulin resistance, and adiposity. Hypothesis/Objectives Genetic loci affecting height in ponies have pleiotropic effects on metabolic pathways and increase the susceptibility to equine metabolic syndrome (EMS). Animals Two hundred ninety‐four Welsh ponies and 529 horses. Methods Retrospective study of horses phenotyped for metabolic traits. Correlations between height and metabolic traits were assessed by Pearson's correlation coefficients. Complementary genome‐wide analysis methods were used to identify a region of interest (ROI) for height and metabolic traits, determine the fraction of heritability contributed by the ROI, and identify candidate genes. Results There was an inverse relationship between height and baseline insulin (−0.26) in ponies. Genomic signature of selection and association analyses for both height and insulin identified the same ~1.3 megabase region on chromosome 6 that contained a shared ancestral haplotype between these traits. The ROI contributed ~40% of the heritability for height and ~20% of the heritability for insulin. High‐mobility group AT‐hook 2 was identified as a candidate gene, and Sanger sequencing detected a c.83G>A (p.G28E) variant associated with height in Shetland ponies. In our cohort of ponies, the A allele had a frequency of 0.76, was strongly correlated with height (−0.75), and was low to moderately correlated with metabolic traits including: insulin (0.32), insulin after an oral sugar test (0.25), non‐esterified fatty acids (0.19), and triglyceride (0.22) concentrations. Conclusions and Clinical Importance These data have important implications for identifying individuals at risk for EMS.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here