z-logo
Premium
Numerical simulation of pharyngeal bolus flow influenced by bolus viscosity and apparent slip
Author(s) -
Mizunuma Hiroshi,
Sonomura Mitsuhiro,
Shimokasa Kenji
Publication year - 2020
Publication title -
journal of texture studies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.593
H-Index - 54
eISSN - 1745-4603
pISSN - 0022-4901
DOI - 10.1111/jtxs.12527
Subject(s) - bolus (digestion) , mechanics , materials science , boundary layer , rheology , shear rate , composite material , physics , medicine , anatomy
Pharyngeal bolus flow was simulated numerically using a finite element method. The bolus liquids were X‐ray medium, glucose, and thickener solutions. For a low‐viscosity bolus, the simulation showed a reasonable agreement of bolus velocity with X‐ray measurements. The influence of bolus density on swallowing velocity was investigated numerically. Although a higher density resulted in a higher bolus velocity, the increase in velocity was modest. When the bolus viscosity was high, it was necessary to apply the slip boundary condition to obtain an agreement for bolus velocity between the simulation and X‐ray measurements. The simulations also showed that the method of characteristic shear rate proposed by Zhu et al., Journal of Texture Studies, 2014, 45, 430–439 is effective for predicting the bolus velocity for shear‐thinning fluids. In order to discuss the effect of saliva lubrication and the physical meaning of the characteristic shear rate, an immiscible two‐layer flow of the core and wall layer was analyzed theoretically by analogy with mesopharyngeal bolus flow. The characteristic shear rate enabled us to correlate the macroscopic flow behavior and the viscosity of the core layer fluid. Lubrication due to the wall layer caused the apparent slip and enhanced the transfer of viscous core fluid. For viscous fluid that presented a large apparent slip in the two‐layer model, the slip boundary condition was needed in the swallowing simulation. The numerical simulation and model flow analysis revealed the usefulness of characteristic shear rate and the importance of saliva‐layer lubrication in swallowing.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here