Premium
ON MIXTURE MEMORY GARCH MODELS
Author(s) -
Li Muyi,
Li Wai Keung,
Li Guodong
Publication year - 2013
Publication title -
journal of time series analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.576
H-Index - 54
eISSN - 1467-9892
pISSN - 0143-9782
DOI - 10.1111/jtsa.12037
Subject(s) - autoregressive conditional heteroskedasticity , mathematics , volatility (finance) , autoregressive model , econometrics , heteroscedasticity , expectation–maximization algorithm , autoregressive fractionally integrated moving average , covariance matrix , long memory , statistics , maximum likelihood
We propose a new volatility model, which is called the mixture memory generalized autoregressive conditional heteroskedasticity (MM‐GARCH) model. The MM‐GARCH model has two mixture components, of which one is a short‐memory GARCH and the other is the long‐memory fractionally integrated GARCH. The new model, a special ARCH( ∞ ) process with random coefficients, possesses both the properties of long‐memory volatility and covariance stationarity. The existence of its stationary solution is discussed. A dynamic mixture of the proposed model is also introduced. Other issues, such as the expectation–maximization algorithm as a parameter estimation procedure, the observed information matrix, which is relevant in calculating the theoretical standard errors, and a model selection criterion, are also investigated. Monte Carlo experiments demonstrate our theoretical findings. Empirical application of the MM‐GARCH model to the daily S&P 500 index illustrates its capabilities.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom