Premium
Paleogene fossil fruits of Stephania (Menispermaceae) from North America and East Asia
Author(s) -
Han Meng,
Manchester Steven R.,
Fu QiongYao,
Jin JianHua,
Quan Cheng
Publication year - 2018
Publication title -
journal of systematics and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.249
H-Index - 46
eISSN - 1759-6831
pISSN - 1674-4918
DOI - 10.1111/jse.12288
Subject(s) - menispermaceae , disjunct , extant taxon , genus , biology , paleogene , subtropics , paleontology , botany , ecology , cretaceous , evolutionary biology , population , alkaloid , demography , sociology
Stephania Loureiro is a large genus within Menispermaceae, with approximately 60 extant species naturally distributed in tropical to subtropical areas in Asia and Africa, and a few in Oceania. This genus possesses highly characteristic endocarps that facilitate identification of extant and fossil specimens. Here, we report some well‐preserved fossil fruits of Stephania from North America and East Asia. The specimens indicate the endocarps were bony or woody with an obovate to obovate‐rotund outline and a horseshoe‐shaped locule. The endocarp length varies from 4.7 to 8.3 mm, and width from 3.7 to 7.0 mm. The endocarp has a clear foramen in the central area and is surrounded by a keel with ribs running along the dorsal surface. Only one lateral crest develops on each side of the endocarp. Two new species are recognized: Stephania wilfii Han & Manchester sp. nov. from the Paleocene to Eocene of Wyoming (USA), and Stephania jacquesii Han & Manchester sp. nov. disjunct between the late Eocene of Oregon (USA) and the late Oligocene of Guangxi Province (China). In addition, on the basis of more detailed morphological comparative analyses, we transfer the fossils formerly treated as Diploclisia auriformis (Hollick) Manchester from the early Eocene of London Clay, and the middle Eocene of Alaska and Oregon to Stephania auriformis (Hollick) Han & Manchester comb. nov. These fossil materials indicate a broader biogeographic distribution for the ancestors of extant Stephania lineages. This finding enhances our knowledge of the taxonomic and morphological diversity of Stephania and provides new evidence concerning its phytogeographic history.