z-logo
Premium
Divergence times and plastid phylogenomics within the intron‐rich order Erythropeltales (Compsopogonophyceae, Rhodophyta)
Author(s) -
Preuss Maren,
Verbruggen Heroen,
West John A.,
Zuccarello Giuseppe C.
Publication year - 2021
Publication title -
journal of phycology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.85
H-Index - 127
eISSN - 1529-8817
pISSN - 0022-3646
DOI - 10.1111/jpy.13159
Subject(s) - biology , phylogenomics , plastid , evolutionary biology , genome , phylogenetics , phylogenetic tree , clade , genetics , gene , chloroplast
The advent of high‐throughput sequencing (HTS) has allowed for the use of large numbers of coding regions to produce robust phylogenies. These phylogenies have been used to highlight relationships at ancient diversifications (subphyla, class) and highlight the evolution of plastid genome structure. The Erythropeltales are an order in the Compsopogonophyceae, a group with unusual plastid genomes but with low taxon sampling. We use HTS to produce near complete plastid genomes of all genera, and multiple species within some genera, to produce robust phylogenies to investigate character evolution, dating of divergence in the group, and plastid organization, including intron patterns. Our results produce a fully supported phylogeny of the genera in the Erythropeltales and suggest that morphologies (upright versus crustose) have evolved multiple times. Our dated phylogeny also indicates that the order is very old (~800 Ma), with diversification occurring after the ice ages of the Cryogenian period (750–635 Ma). Plastid gene order is congruent with phylogenetic relationships and suggests that genome architecture does not change often. Our data also highlight the abundance of introns in the plastid genomes of this order. We also produce a nearly complete plastid genome of Tsunamia transpacifica (Stylonematophyceae) to add to the taxon sampling of genomes of this class. The use of plastid genomes clearly produces robust phylogenetic relationships that can be used to infer evolutionary events, and increased taxon sampling, especially in less well‐known red algal groups, will provide additional insights into their evolution.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here