z-logo
Premium
Detection of Phagotrophy in the Marine Phytoplankton Group of the Coccolithophores (Calcihaptophycidae, Haptophyta) During Nutrient‐replete and Phosphate‐limited Growth
Author(s) -
Avrahami Yoav,
Frada Miguel J.
Publication year - 2020
Publication title -
journal of phycology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.85
H-Index - 127
eISSN - 1529-8817
pISSN - 0022-3646
DOI - 10.1111/jpy.12997
Subject(s) - biology , mixotroph , emiliania huxleyi , coccolithophore , botany , algae , ingestion , population , ploidy , phytoplankton , haptophyte , tunicate , ecology , nutrient , zoology , bacteria , heterotroph , biochemistry , demography , sociology , gene , genetics
Mixotrophic algae that combine photoautotrophy with phagotrophy in a single cell are prevalent in marine ecosystems. Here, we assessed the ability of food ingestion in coccolithophores, an important group of calcifying haptophytes inhabiting the oceans. We tested four species from different coccolithophore lineages ( Emiliania huxleyi , Calcidiscus leptoporus , Coccolithus braarudii , and Calyptrosphaera sphaeroidea ). For both E. huxleyi and C. leptoporus we included different life phases (haploid and diploid). For C. braarudii we only tested diploid heterococcolithophore cells, while for C. sphaeroidea we only tested haploid holococcolithophore cells. Phagotrophy was assessed using fluorescently labeled bacteria (FLB) as model prey item, under nutrient‐replete and phosphate‐limited conditions. We detected by microscopy ingestion of FLB by all species, except the diploid C. braarudii strain. However, a previous study detected ingestion by haploid cells of C. braarudii . These overall results indicate that mixotrophy and the ability to ingest prey is widespread in coccolithophores. Yet, in all tested species the ingestion of FLB was low (<1% of the population contained prey at all time points over 2 days), namely for E. huxleyi and the diploid cells from C. leptoporus where detection of ingestion was sporadic. Moreover, no clear differences were detected between life phases in E. huxleyi and C. leptoporus under equal circumstances, or between replete and limited growth conditions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here