Premium
Use of NaHCO 3 and MgO as additives for sheep fed only pasture for a restricted period of time per day: effects on intake, digestion and the rumen environment
Author(s) -
PérezRuchel A.,
Repetto J. L.,
Cajarville C.
Publication year - 2014
Publication title -
journal of animal physiology and animal nutrition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.651
H-Index - 56
eISSN - 1439-0396
pISSN - 0931-2439
DOI - 10.1111/jpn.12173
Subject(s) - rumen , forage , chemistry , zoology , dry matter , fermentation , excretion , pasture , urine , ammonia , agronomy , food science , biochemistry , biology
Summary Effects of NaHCO 3 and MgO buffer addition on intake and digestive utilization of a pasture were studied in wethers allowed a restricted time of access to forage. Twelve wethers housed in metabolic cages and fed fresh forage (predominantly L otus corniculatus ) ad libitum for 6 h/d were randomly assigned to one of the following treatments: a control forage without buffer (C) or a forage plus buffer composed of a mixture of 750 g/kg NaHCO 3 and 250 g/kg MgO at 20 g/kg dry matter intake (B). Feeding behaviour, feed and water intake and digestibility, urine output, Na urine elimination, kinetics of passage, ruminal pH and ammonia concentration, N balance and ruminal microbial N synthesis were determined in vivo , and the ruminal liquor activity was evaluated in vitro by fermentation of wheat straw. Addition of buffer increased total water intake (p = 0.05), Na urinary output (p = 0.01), purine derivative excretion in urine (p = 0.05) and tended to decrease mean total retention time in the digestive tract (p = 0.09). However, buffer addition increased ruminal pH (p < 0.001) and tended to decrease the ammonia concentration (p = 0.05). That use of buffer decreased ruminal activity was evidenced by a lower volume of gas produced in vitro (p = 0.01) possibly due to a lower microbial concentration in rumen liquor. The higher rumen dilution rate, likely due to a higher water intake, seems to have been the key driver of the actions of buffer supplementation on the rumen environment. Moreover, addition of NaHCO 3 led to an increased urinary Na excretion, which should be considered due to its likely negative environmental impacts.