z-logo
Premium
Next steps in development of the diagnostic criteria for temporomandibular disorders (DC/TMD): Recommendations from the International RDC/TMD Consortium Network workshop
Author(s) -
Michelotti A.,
Alstergren P.,
Goulet J. P.,
Lobbezoo F.,
Ohrbach R.,
Peck C.,
Schiffman E.,
List T.
Publication year - 2016
Publication title -
journal of oral rehabilitation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.991
H-Index - 93
eISSN - 1365-2842
pISSN - 0305-182X
DOI - 10.1111/joor.12378
Subject(s) - orofacial pain , library science , oral medicine , medicine , dentistry , psychology , computer science , surgery
The cytotoxicity of a dental alloy depends on, but is not limited to, the extent of its corrosion behavior. Individual ions may have effects on cell viability that are different from metals interacting within the alloy structure. We aimed to investigate the cytotoxicity of individual metal ions in concentrations similar to those reported to be released from Pd-based dental alloys on mouse fibroblast cells. Metal salts were used to prepare seven solutions (concentration range 100 ppm–1 ppb) of the transition metals, such as Ni(II), Pd(II), Cu(II), and Ag(I), and the metals, such as Ga(III), In(III), and Sn(II). Cytotoxicity on mouse fibroblasts L929 was evaluated using the MTT assay. Ni, Cu, and Ag are cytotoxic at 10 ppm, Pd and Ga at 100 ppm. Sn and In were not able to induce cytotoxicity at the tested concentrations. Transition metals were able to induce cytotoxic effects in concentrations similar to those reported to be released from Pd-based dental alloys. Ni, Cu, and Ag were the most cytotoxic followed by Pd and Ga; Sn and In were not cytotoxic. Cytotoxic reactions might be considered in the etiopathogenesis of clinically observed local adverse reactions

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here