z-logo
Premium
Understanding cell cycle and cell death regulation provides novel weapons against human diseases
Author(s) -
Wiman K. G.,
Zhivotovsky B.
Publication year - 2017
Publication title -
journal of internal medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.625
H-Index - 160
eISSN - 1365-2796
pISSN - 0954-6820
DOI - 10.1111/joim.12609
Subject(s) - programmed cell death , cell cycle , multicellular organism , cell cycle checkpoint , cell growth , biology , cell , cell fate determination , microbiology and biotechnology , medicine , apoptosis , genetics , transcription factor , gene
Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life‐and‐death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled ‘The Cell Cycle and Cell Death in Disease’ was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here