Premium
Restricted co‐localization of glutamate and dopamine in neurons of the adult sea lamprey brain
Author(s) -
FernándezLópez B.,
SobridoCameán D.,
Anadón R.,
Rodicio M. C.,
BarreiroIglesias A.
Publication year - 2017
Publication title -
journal of anatomy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.932
H-Index - 118
eISSN - 1469-7580
pISSN - 0021-8782
DOI - 10.1111/joa.12674
Subject(s) - dopaminergic , neuroscience , glutamatergic , dopamine , biology , ventral tegmental area , lamprey , hypothalamus , glutamate receptor , neuron , preoptic area , dopaminergic pathways , biochemistry , receptor , fishery
Abstract Co‐localization of dopamine with other classical neurotransmitters in the same neuron is a common phenomenon in the brain of vertebrates. In mammals, some dopaminergic neurons of the ventral tegmental area and the hypothalamus have a glutamatergic co‐phenotype. However, information on the presence of this type of dopaminergic neurons in other vertebrate groups is very scant. Here, we aimed to provide new insights on the evolution of this neuronal co‐phenotype by studying the presence of a dual dopaminergic/glutamatergic neuron phenotype in the central nervous system of lampreys. Double immunofluorescence experiments for dopamine and glutamate in adult sea lampreys revealed co‐localization of both neurotransmitters in some neurons of the preoptic nucleus, the nucleus of the postoptic commissure, the dorsal hypothalamus and in cerebrospinal fluid‐contacting cells of the caudal rhombencephalon and rostral spinal cord. Moreover, co‐localization of dopamine and glutamate was found in dopaminergic fibres in a few brain regions including the lateral pallium, striatum, and the preoptic and postoptic areas but not in the brainstem. Our results suggest that the presence of neurons with a dopaminergic/glutamatergic co‐phenotype is a primitive character shared by jawless and jawed vertebrates. However, important differences in the distribution of these neurons and fibres were noted among the few vertebrates investigated to date. This study offers an anatomical basis for further work on the role of glutamate in dopaminergic neurons.