z-logo
Premium
Emerging insights into hypothalamic‐pituitary‐gonadal axis regulation and interaction with stress signalling
Author(s) -
AcevedoRodriguez A.,
Kauffman A. S.,
Cherrington B. D.,
Borges C. S.,
Roepke T. A.,
Laconi M.
Publication year - 2018
Publication title -
journal of neuroendocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.062
H-Index - 116
eISSN - 1365-2826
pISSN - 0953-8194
DOI - 10.1111/jne.12590
Subject(s) - hypothalamic–pituitary–gonadal axis , medicine , kisspeptin , endocrinology , hypothalamic–pituitary–adrenal axis , hormone , hypothalamus , biology , negative feedback , neuroscience , luteinizing hormone , physics , quantum mechanics , voltage
Reproduction and fertility are regulated via hormones of the hypothalamic‐pituitary‐gonadal ( HPG ) axis. Control of this reproductive axis occurs at all levels, including the brain and pituitary, and allows for the promotion or inhibition of gonadal sex steroid secretion and function. In addition to guiding proper gonadal development and function, gonadal sex steroids also act in negative‐ and positive‐feedback loops to regulate reproductive circuitry in the brain, including kisspeptin neurones, thereby modulating overall HPG axis status. Additional regulation is also provided by sex steroids made within the brain, including neuroprogestins. Furthermore, because reproduction and survival need to be coordinated and balanced, the HPG axis is able to modulate (and be modulated by) stress hormone signalling, including cortiscosterone, from the hypothalamic‐pituitary‐adrenal ( HPA ) axis. This review covers recent data related to the neural, hormonal and stress regulation of the HPG axis and emerging interactions between the HPG and HPA axes, focusing on actions at the level of the brain and pituitary.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here