z-logo
Premium
Molecular forms of neurogranin in cerebrospinal fluid
Author(s) -
Nazir Faisal Hayat,
Camporesi Elena,
Brinkmalm Gunnar,
Lashley Tammaryn,
Toomey Christina E.,
Kvartsberg Hlin,
Zetterberg Henrik,
Blennow Kaj,
Becker Bruno
Publication year - 2021
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/jnc.15252
Subject(s) - neurogranin , chemistry , immunoprecipitation , cerebrospinal fluid , monomer , amino acid , biochemistry , biology , signal transduction , gene , protein kinase c , organic chemistry , neuroscience , polymer
Neurogranin (Ng) is a 78 amino acid neuronal protein and a biomarker candidate for Alzheimer's disease (AD). Ng has been suggested to bind to calmodulin and phosphatidic acid via its centrally located IQ domain. Ng is cleaved within this functionally important domain, yielding the majority of fragments identified in cerebrospinal fluid (CSF), suggesting that cleavage of Ng may be a mechanism to regulate its function. Up to now, Ng has been shown to be present in CSF as both C‐terminal fragments as well as full‐length protein. To obtain an overview of the different molecular forms of Ng present in CSF, we show by size exclusion chromatography (SEC), immunoblotting, immunoprecipitation, and MS that Ng is present in CSF as several molecular forms. Besides monomeric full‐length Ng, also higher molecular weight forms of Ng, and C‐terminal‐ and previously not identified N‐terminal fragments were observed. We found by immunodepletion that C‐terminal peptides contribute on average to ~50% of the total‐Ng ELISA signal in CSF samples. There were no differences in the overall C‐terminal fragment/total‐Ng ratios between samples from AD and control groups. In addition, we found that monomeric Ng and its C‐terminal fragments bind to heparin via a heparin‐binding motif, which might be of relevance for their export mechanism from neurons. Taken together, this study highlights the presence of several molecular forms of Ng in CSF, comprising monomeric full‐length Ng, and N‐ and C‐terminal truncations of Ng, as well as larger forms of still unknown composition.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here