z-logo
Premium
Microglia and the aging brain: are senescent microglia the key to neurodegeneration?
Author(s) -
Angelova Dafina M.,
Brown David R.
Publication year - 2019
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/jnc.14860
Subject(s) - microglia , neurodegeneration , neuroscience , disease , alzheimer's disease , medicine , population , aging brain , biology , pathology , immunology , inflammation , environmental health
The single largest risk factor for etiology of neurodegenerative diseases like Alzheimer’s disease is increased age. Therefore, understanding the changes that occur as a result of aging is central to any possible prevention or cure for such conditions. Microglia, the resident brain glial population most associated with both protection of neurons in health and their destruction is disease, could be a significant player in age related changes. Microglia can adopt an aberrant phenotype sometimes referred to either as dystrophic or senescent. While aged microglia have been frequently identified in neurodegenerative diseases such as Alzheimer’s disease, there is no conclusive evidence that proves a causal role. This has been hampered by a lack of models of aged microglia. We have recently generated a model of senescent microglia based on the observation that all dystrophic microglia show iron overload. Iron‐overloading cultured microglia causes them to take on a senescent phenotype and can cause changes in models of neurodegeneration similar to those observed in patients. This review considers how this model could be used to determine the role of senescent microglia in neurodegenerative diseases.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here