z-logo
Premium
Neuroprotective effect of rL osac on supplement‐deprived mouse cultured cortical neurons involves maintenance of monocarboxylate transporter MCT 2 protein levels
Author(s) -
AlvarezFlores Miryam P.,
Hébert Audrey,
Gouelle Cathy,
Geller Sarah,
ChudzinskiTavassi Ana M.,
Pellerin Luc
Publication year - 2019
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/jnc.14617
Subject(s) - monocarboxylate transporter , viability assay , biology , microbiology and biotechnology , neuroprotection , cell , transporter , biochemistry , pharmacology , gene
The recombinant Lonomia obliqua Stuart-factor activator (rLosac) is a recombinant hemolin which belongs to the immunoglobulin superfamily of cell adhesion molecules. It is capable of inducing pro-survival activity in serum-deprived human umbilical vein endothelial cells (HUVECs) and fibroblasts by increasing mitochondrial metabolism. We hypothesize that it could promote neuronal survival by acting on neuroenergetics. Our study reveals that treatment of primary mouse cortical neurons cultured in neurobasal medium lacking B27 supplement with rLosac led to an enhancement of cell viability in a time- and concentration-dependent manner. In parallel, preserved or enhanced phosphorylation of Akt, p44, and p42 MAPK, as well as mTOR was observed following treatment with rLosac. During deprivation, as assessed by western blot and qRT-PCR, protein and mRNA expression of MCT2 (the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate) decreased significantly in B27 supplement-deprived cortical neurons and was hardly detected after 24 h of deprivation. Interestingly, rLosac maintained MCT2 protein expression after 24 h of deprivation including at the cell surface without preventing mRNA loss. MCT2 knockdown reduced rLosac-enhanced cell viability, confirming its involvement in rLosac effect. Enhanced uptake of lactate was detected following rLosac treatment and might contribute to rLosac-enhanced viability during deprivation. In the presence of both lactate and rLosac, cell viability was higher than in the presence of lactate alone. Our observations suggest that rLosac promotes cell viability in stressed (B27 supplement-deprived) neurons by facilitating the use of lactate as energy substrate via the preservation of MCT2 protein expression. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here