z-logo
Premium
Ectopic positioning of Bergmann glia and impaired cerebellar wiring in Mlc1‐over‐expressing mice
Author(s) -
Kikuchihara Saori,
Sugio Shouta,
Tanaka Kenji F.,
Watanabe Takaki,
Kano Masanobu,
Yamazaki Yoshihiko,
Watanabe Masahiko,
Ikenaka Kazuhiro
Publication year - 2018
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/jnc.14486
Subject(s) - cerebellum , glutamate receptor , biology , microbiology and biotechnology , neuroscience , white matter , central nervous system , excitatory postsynaptic potential , myelin , purkinje cell , anatomy , inhibitory postsynaptic potential , medicine , genetics , receptor , radiology , magnetic resonance imaging
Mlc1 is a causative gene for megalencephalic leukoencephalopathy with subcortical cysts, and is expressed in astrocytes. Mlc1-over-expressing mice represent an animal model of early-onset leukoencephalopathy, which manifests as astrocytic swelling followed by myelin membrane splitting in the white matter. It has been previously reported that Mlc1 is highly expressed in Bergmann glia, while the cerebellar phenotypes of Mlc1-over-expressing mouse have not been characterized. Here, we examined the cerebellum of Mlc1-over-expressing mouse and found that the distribution of Bergmann glia (BG) was normally compacted along the Purkinje cell (PC) layer until postnatal day 10 (P10), while most BG were dispersed throughout the molecular layer by P28. Ectopic BG were poorly wrapped around somatodendritic elements of PCs and exhibited reduced expression of the glutamate transporter glutamate-aspartate transporter. Extraordinarily slow and small climbing fiber (CF)-mediated excitatory post-synaptic currents, which are known to be elicited under accelerated glutamate spillover, emerged at P20-P28 when BG ectopia was severe, but not at P9-P12 when ectopia was mild. Furthermore, maturation of CF wiring, which translocates the site of innervation from somata to proximal dendrites, was also impaired. Manipulations that restricted the Mlc1-over-expressing period successfully generated mice with and without BG ectopia, depending on the over-expressing period. Together, these findings suggest that there is a critical time window for mechanisms that promote the positioning of BG in the PC layer. Once normal positioning of BG is affected, the differentiation of BG is impaired, leading to insufficient glial wrapping, exacerbated glutamate spillover, and aberrant synaptic wiring in PCs. Open Practices Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Cover Image for this issue: doi: 10.1111/jnc.14199.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here