Premium
Transcriptional co‐repressor SIN 3A silencing rescues decline in memory consolidation during scopolamine‐induced amnesia
Author(s) -
Srivas Sweta,
Thakur Mahendra K.
Publication year - 2018
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/jnc.14320
Subject(s) - memory consolidation , gene silencing , repressor , scopolamine , amnesia , consolidation (business) , neuroscience , chemistry , psychology , biology , transcription factor , pharmacology , cognitive psychology , biochemistry , hippocampus , gene , accounting , business
Epigenetic modifications through methylation of DNA and acetylation of histones modulate neuronal gene expression and regulate long‐term memory. Earlier we demonstrated that scopolamine‐induced decrease in memory consolidation is correlated with enhanced expression of hippocampal DNA methyltransferase 1 ( DNMT 1) and histone deacetylase 2 ( HDAC 2) in mice. DNMT 1 and HDAC 2 act together by recruiting a co‐repressor complex and deacetylating the chromatin. The catalytic activity of HDAC s is mainly dependent on its incorporation into multiprotein co‐repressor complexes, among which SIN 3A‐ HDAC 2 co‐repressor is widely studied to regulate synaptic plasticity. However, the involvement of co‐repressor complex in regulating memory loss or amnesia is unexplored. This study examines the role of co‐repressor SIN 3A in scopolamine‐induced amnesia through epigenetic changes in the hippocampus. Scopolamine treatment remarkably enhanced hippocampal SIN 3A expression in mice. To prevent such increase in SIN 3A expression, we used hippocampal infusion of SIN 3A‐si RNA and assessed the effect of SIN 3A silencing on scopolamine‐induced amnesia. Silencing of SIN 3A in amnesic mice reduced the binding of HDAC 2 at neuronal immediate early genes ( IEG s) promoter, but did not change the expression of HDAC 2. Furthermore, it increased acetylation of H3K9 and H3K14 at neuronal IEG s (Arc, Egr1, Homer1 and Narp) promoter, prevented scopolamine‐induced down‐regulation of IEG s and improved consolidation of memory during novel object recognition task. These findings together suggest that SIN 3A has a critical role in regulation of synaptic plasticity and might act as a potential therapeutic target to rescue memory decline during amnesia and other neuropsychiatric pathologies.