z-logo
Premium
Tyrosine hydroxylase positive perisomatic rings are formed around various amacrine cell types in the mammalian retina
Author(s) -
Debertin Gábor,
Kántor Orsolya,
KovácsÖller Tamás,
Balogh Lajos,
SzabóMeleg Edina,
Orbán József,
Nyitrai Miklós,
Völgyi Béla
Publication year - 2015
Publication title -
journal of neurochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.75
H-Index - 229
eISSN - 1471-4159
pISSN - 0022-3042
DOI - 10.1111/jnc.13144
Subject(s) - dopaminergic , neuroscience , biology , tyrosine hydroxylase , retina , dopamine , retinal , amacrine cell , population , microbiology and biotechnology , medicine , biochemistry , environmental health
Abstract Dopaminergic neurons of the central nervous system are mainly found in nuclei of the midbrain and the hypothalamus that provide subcortical and cortical targets with a rich and divergent innervation. Disturbance of signaling through this system underlies a variety of deteriorating conditions such as Parkinson's disease and schizophrenia. Although retinal dopaminergic signaling is largely independent of the above circuitry, malfunction of the retinal dopaminergic system has been associated with anomalies in visual adaptation and a number of retinal disorders. Dopamine (DA) is released mainly in a paracrine manner by a population of tyrosine hydroxylase expressing (TH + ) amacrine cells (AC) of the mammalian retina; thus DA reaches virtually all retinal cell types by diffusion. Despite this paracrine release, however, the so called AII ACs have been considered as the main targets of DA signaling owing to a characteristic and robust ring‐like TH + innervation to the soma/dendritic‐stalk area of AII cells. This apparent selectivity of TH + innervation seems to contradict the divergent DAergic signaling scheme of other brain loci. In this study, however, we show evidence for intimate proximity between TH + rings and somata of neurochemically identified non‐AII cells. We also show that this phenomenon is not species specific, as we observe it in popular mammalian animal models including the rabbit, the rat, and the mouse. Finally, our dataset suggests the existence of further, yet unidentified post‐synaptic targets of TH + dendritic rings. Therefore, we hypothesize that TH + ring‐like structures target the majority of ACs non‐selectively and that such contacts are wide‐spread among mammals. Therefore, this new view of inner retinal TH + innervation resembles the divergent DAergic innervation of other brain areas through the mesolimbic, mesocortical, and mesostriatal signaling streams.AII amacrine cells have been considered as the main targets of dopamine signaling in the mammalian retina owing to a characteristic ring‐like innervation from dopaminergic (TH + ) amacrine cells (green) to somata of AII cells (red). In this study, we show the intimate proximity of TH + rings and somata of non‐AII cells, including starburst‐a amacrine cells (blue) and other unidentified amacrine cells (magenta). We find that this phenomenon is not species specific and it occurs in a number of popular mammalian animal models. We hypothesize that TH + ring‐inputs target most amacrine cells non‐selectively and thus it resembles the divergent dopaminergic innervation of other brain areas.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here