Premium
Image scanning microscopy: an overview
Author(s) -
WARD E.N.,
PAL R.
Publication year - 2017
Publication title -
journal of microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.569
H-Index - 111
eISSN - 1365-2818
pISSN - 0022-2720
DOI - 10.1111/jmi.12534
Subject(s) - microscopy , nanotechnology , resolution (logic) , raster scan , super resolution microscopy , optics , photoactivated localization microscopy , near field scanning optical microscope , computer science , optical microscope , physics , materials science , scanning confocal electron microscopy , artificial intelligence , scanning electron microscope
Summary For almost a century, the resolution of optical microscopy was thought to be limited by Abbé’s law describing the diffraction limit of light. At the turn of the millennium, aided by new technologies and fluorophores, the field of optical microscopy finally surpassed the diffraction barrier: a milestone achievement that has been recognized by the 2014 Nobel Prize in Chemistry. Many super‐resolution methods rely on the unique photophysical properties of the fluorophores to improve resolution, posing significant limitations on biological imaging, such as multicoloured staining, live‐cell imaging and imaging thick specimens. Structured Illumination Microscopy (SIM) is one branch of super‐resolution microscopy that requires no such special properties of the applied fluorophores, making it more versatile than other techniques. Since its introduction in biological imaging, SIM has proven to be a popular tool in the biologist's arsenal for following biological interaction and probing structures of nanometre scale. SIM continues to see much advancement in design and implementation, including the development of Image Scanning Microscopy (ISM), which uses patterned excitation via either predefined arrays or raster‐scanned single point‐spread functions (PSF). This review aims to give a brief overview of the SIM and ISM processes and subsequent developments in the image reconstruction process. Drawing from this, and incorporating more recent achievements in light shaping (i.e. pattern scanning and super‐resolution beam shaping), this study also intends to suggest potential future directions for this ever‐expanding field.